skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Yuzhou_G_N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The collective response of a system is profoundly shaped by the interaction dynamics between its constituent elements. In physics, tailoring these interactions can enable the observation of unusual phenomena that are otherwise inaccessible in standard settings, ranging from the possibility of a Kramer’s degeneracy even in the absence of spin to the breakdown of the bulk-boundary correspondence. Here, we show how tailored asymmetric coupling terms can be realized in photonic integrated platforms by exploiting non-Hermitian concepts. In this regard, we introduce a generalized photonic molecule composed of a pair of microring resonators with internal S-bends connected via two directional couplers and a link waveguide. By judiciously designing the parameters of this system, namely, the length of the links and the power division ratio of the directional couplers, we experimentally show the emergence of Hermitian and non-Hermitian-type exchange interactions. The ramifications of such coupling dynamics are then studied in 1D chain and ring-type active lattices. Our findings establish the proposed structure as a promising building block for the realization of a variety of phenomena, especially those associated with phase locking in laser arrays and non-Hermitian topological lattices. 
    more » « less